Latency, Damned Latency, and Streaming

Speaker: Jonathan Goldstein
Microsoft Research

This talk incorporates insights from 8 years of research and product development, with too many valued contributors to list, but a special callout to:

Badrish Chandramouli
Who has been my colleague and research partner on this journey
Diverse Scenarios for Analytics

• Real-time
 • Monitor app telemetry (e.g., ad clicks) & raise alerts when problems are detected

• Real-time with historical
 • Correlate live data stream with historical activity (e.g., from 1 week back)

• Offline
 • Develop initial monitoring query using logs
 • Back-test monitoring query over historical logs

• Progressive
 • Non-temporal analysis (e.g., BI) over large dataset, stream data, get quick approximate results
Diverse Scenarios for Analytics

- **Real-time**
 - Monitor app telemetry (e.g., ad clicks) & raise alerts when problems are detected

- **Real-time with historical**
 - Correlate live data stream with historical activity (e.g., from 1 week back)

- **Offline**
 - Develop initial monitoring query using logs
 - Back-test monitoring query over historical logs

- **Progressive**
 - Non-temporal analysis (e.g., BI) over large dataset, stream data, get quick approximate results

SQL	Python	Hadoop/PIG
Kinesis | R | Splunk
Matlab | Storm | Tableau
Spark/Spark SQL/Spark Streaming | Custom Java Code | Interactive Query Authoring
What a mess!

• Different tools made by different folks:
 • No agreement on what data is
 • No agreement on what logic/queries are
 • Real application developers pay the price

It doesn’t need to be this way
Pieces of the Data Analytics Problem

• Data Movement
 • Lots of interesting issues but I won’t say much more
• Computation

These problems aren’t as different as they seem!
Enter Trill (A Trillion Events Per Day Per Node)

• What makes Trill special?
 • Time as a first class citizen
 • Adaptability to a variety of settings
 • Performance, Performance, Performance
 • 2-4 orders of magnitude faster than traditional SPEs
 • Comparable to commercial column stores for offline
Trill’s Use Cases

- Azure Stream Analytics Cloud service
- With Scope for Bing Ads
- With Orleans for Halo game monitoring & debugging
- ...
Time as a First Class Citizen

• Low latency analytics:
 • Computation that is periodically repeated over a recent subset of data
 • Business Reports, Dashboards, Model Training
 • Windows capture a critical aspect of semantics
 • Window – All data used for one reporting period
 • A timestamp in the data is needed to decide window membership
 • Very helpful for windowing to be part of the query language
 • Faking windows with groupby isn’t enough
 • Hopping Windows, Session Windows
 • Nice algorithms for windowed computation when data arrives with bounded disorder
 • Incremental
 • Bounded state
Time as a First Class Citizen

• For instance, consider the CEDR algebra:
 • Rows are tagged with a contribution time interval
 • This time interval can be manipulated using new operators (e.g. HoppingWindow)

\[
\text{S.HoppingWindow(Hop, WindowSize).Count()}
\]

\[
\begin{array}{c}
\text{e}_1 \quad \text{e}_2 \quad \text{e}_3 \quad \text{e}_4 \quad \text{e}_5 \quad \text{e}_6 \\
\text{2} \quad 4 \quad 4 \quad \ldots
\end{array}
\]
Time as a First Class Citizen

• So windows are about supporting low latency, right?
 • What about offline log analytics?
 • Pattern matching: The order of events is critical
 • Developing and debugging streaming queries
 • Be careful to log and use app time for everything, including real-time

• What about conventional analytics with really large datasets?
 • Early answers can be useful, but what do intermediate results mean?
 • Couldn’t we use something like the windowing trick and timestamps to define exactly which answers should be produced when, and based on which data?
Variety of Settings

• Customers want to use a query processor with varying infrastructure:
 • For real time (e.g. with Orleans)
 • For scaled out offline (e.g. with Map-Reduce & in-mem progeny)
 • For interactive data analysis applications (in Tempe)

• Customers find limiting data types (e.g. SQL) extremely, well, limiting
 • They want to store collections
 • Sometimes they even want to store classes with references in them!
Variety of Settings

• Solution: Trill is a passive library in a modern language (Trill uses .NET)
 • Easy to embed in any part of any .NET application
 • Payloads can contain any .NET type
 • LINQ is our query language (more later)
 • Data ingress and egress using IEnumerable and IObservable
 • Must be able to checkpoint and restore its own state
Performance, Performance, Performance

• One size fits all analytics QP requires competitive performance across a wide spectrum of analytics

• Column stores are fast!

• Really fast!
 • Orders of magnitude faster than traditional stream processors at relational queries!

• What are we going to do?
Performance, Performance, Performance

• Column stores have the answer:

 Teach a streaming system how to do column store tricks!
Performance, Performance, Performance

• Data organized as stream of batches
 • Purely physical (no impact on query results)

• Users specify latency constraint (10 secs)
 • Batch up to 10 secs of data
 • Small batches \rightarrow low latency
 • Large batches \rightarrow high throughput
 • More load \rightarrow larger batches \rightarrow better throughput
+ Columnar

• Columnar format within each batch
 • Timestamps as arrays
 • Bitvector to indicate row absence

    ```
    class DataBatch {
      long[] SyncTime;
      ...
      Bitvector BV;
    }
    ```

 • One array per payload field

    ```
    class UserData_Gen : DataBatch {
      long[] c_ClickTime;
      long[] c_User;
      long[] c_AdId;
    }
    ```

• Enables efficient QP & serialization
+ Made Invisible and Fast By Code Generation

- User view is row-oriented
 - Dynamically generate and compile code for operators and batches
 - LINQ gives users static type checking at query composition time and intellisense
- E.g. Filter (where)

 \[
 \text{str.Where}(e \Rightarrow e.\text{User} \mod 100 < 5)
 \]

- Codegen goals:
 - Tight loops over batches
 - Avoid method calls within loops
 - Columns accessed only if needed
Evaluation (sample)

- Pre-loaded datasets in main memory
- 16-core machine
- Temporal queries
Evaluation (sample)

- Pre-loaded datasets in main memory
- 16-core machine
- Relational queries
Conclusions

• Low latency analytics isn’t just niche streaming products
• Rather, it’s an opportunity to expand the scope of analytics
• Current cloud applications are in desperate need of this unification
• Trill is a widely deployed engine used across the whole analytics spectrum.
 • Handles Time Powerfully: Covers SQL, Real-Time, Log analysis, Early answers, etc...
 • Easily deployed in any .NET app: Trill is a passive .NET library
 • Fast: Best of breed performance or better across the analytics spectrum
Where Do We Go From Here?

• How about the data movement part?
 • There’s actually been a lot of work in this area (Event Hub, Kinesis, Storm, Kafka, etc...)
 • Lots of work to do, but very actionable

• How about OLTP? Can OLTP be effectively fused with modern analytics?
 • What would it mean?
 • Can it be done while matching Trill’s performance and expressiveness?
Publications Describing the Presented Ideas

• The original CEDR paper (skip the 1st half):

• CEDR and map-reduce system for expressing both offline and online queries:
 Temporal Analytics on Big Data for Web Advertising. *ICDE 2012*

• CEDR and scaled out system for early answers:
 Scalable Progressive Analytics on Big Data in the Cloud. *PVLDB 6(14)*

• Trill:
 Trill: A High-Performance Incremental Query Processor for Diverse Analytics. *PVLDB 8(4)*