

Where does all that HPTS data go?

We're generating over an exabyte of data per day!

Medica

Sensor

Person

"Small"

Much of

"Games

Medica

Sensor& struct

g time

y., climate

- Personal data → never want to delete <u>anything</u>
- A lot of data wants to live for a <u>very</u> long time...

The challenge

- We're storing a lot of data for a very long time
- This data can be very large: terabytes to petabytes per person / sensor network!
- Some (much?) of this data is very sensitive
 - Medical records
 - Corporate and government data
 - Sensor data: structural monitors, geo sensors (oil), etc.
- Attacks on this data can occur over a long period of time
 - Difficult to trust any one organization/site with it
- But we need to use this data, too!
 - Read old information
 - Search through stored data for useful information

The challenge, in brief

We need to reconcile our needs for privacy and utility for long-term data storage!

Threat model

- Attacker has
 - Unlimited computing power / storage
 - Unlimited time
 - Full access to any compromised repository
 - Ability to save past queries to compromised repositories
- Assume M-1 repositories have been compromised
- Compromise of authentication mechanism is outside of scope
 - But it's straightforward to change authentication mechanism without touching all of the data!

Challenge 1: store the data

- Use secret sharing to generate shares
- Distribute shares to each of N archives
 - Need at least M shares to Archive rebuild
 - N and M are configurable
- Require <u>authorization</u> to return data to requester
- POTSHARDS and other systems do this
 - Still need work to reduce overhead of splitting

Data Custodians
Distributed across <u>multiple</u> sites.

How does this help?

- No "information" at any one site
 - Must compromise M sites to gain any useful information
 - Difficult to do this undetectably
- Immune to key loss
 - Archives can pool their shares to allow rebuilding of data
- Immune to key / encryption algorithm compromise
 - Many forms of secret splitting are <u>information</u>theoretically secure
 - No amount of NSA tomfoolery can weaken this...
- Difficult to identify "related" shares on different archives
 - Several approaches to make this possible

Challenge 2: search the data

- This level of security is great, but...
- How can we find anything in this system?
 - Want to prevent archive maintainers from figuring out what we're looking for
 - Want to prevent archive maintainers from identifying relationships between shares
- Client needs to tag shares on each archive
 - Tags need to be "nonsense" to archive
 - Tags need to be different across archives
 - Need to prevent (or at least reduce) possibility of correlating documents by monitoring search requests
 - But, tags need to be readily searchable (of course)

Percival overview

File Ingestion

For each file

Generate a Bloom filter

for each share

Distribute these bundles, one per repository

Create a Bloom filter from the search terms

filename	results filter
file1	011011110000010110010
file2	01101111000001010010
file3	01101111000001010010

Process the results

Design: ingestion

- Pre-index each share with a Bloom filter
 - Generate list of terms W
 - Combine each term, w_i, with the repository key, key_r
 v_i = KeyedHash(w_i, key_r)
 - Generate k locations using k hash functions of v_i and set the corresponding bits in the Bloom filter for r
- Problem: it may be possible to associate shares on r with the same bits set in the Bloom filter
- Solution: set randomly-selected bits in the Bloom filter for each share on each repository (chaff)
 - Obscures the relationship between set bits and terms
 - Increases the number of false positives

Design: ingestion

- Shares with similar terms still differ in Bloom filters
 - Amount of chaff is tunable

 currently investigating
 tradeoffs
- Different Bloom filter for each repository
 - Difficult to correlate shares across repositories
- Add H_i, h_i to each share
 - H = hash(data)
 - $H_i = \text{hash}(H, key_r)$
 - Share of H: $h_i = \text{split}(H, i)$

11

Design: search

Client

- Generate a search Bloom filter for each repository
- Send each Bloom filter and hit threshold to each repository

- Calculate intersection for each share's Bloom filter
- Hit threshold met?
- Return list of shares that meet the threshold

- Get results from each server
- Identify documents with shares in each result list
- Request shares from each repository

Search: using the Bloom filters

- Set b bits in search Bloom filter using same hash functions that were used when shares were stored
 - Use keyr to generate different filters for each repository
- Add chaff bits to search Bloom filter
 - Again, goal is to make correlating different searches more difficult
- Require archive to return all results with at least b bits that match
 - This contains a <u>superset</u> of desired results

Search: identifying results at the client

- Eliminate shares whose Bloom filters don't contain all of the "real" bits
- Try all combinations of shares, one from each repo
 - Reassemble the hash value from the split hashes
 - Verify reassembled value using keyr against keyed hash stored in one of the shares
- Request full shares to rebuild the desired data

Search: issues

- Is combinatoric reassembly slow?
 - Depends on the number of shares that pass the Bloom filter test
 - Typically not an issue with low false positive rates
 - Can become large for large share "width"
- Is use of Bloom filters slow or inefficient?
 - Can use techniques for faster searches
 - Can compress Bloom filters (especially results)
 - Results need only include bits that match the search

How secure is it?

- Data can't be rebuilt without sufficient shares
 - Attempts to get large quantities of data from independent archives will raise suspicion
- What about targeted attacks?
 - Difficult to correlate searches across archives to identify related shares
 - Recombination is much harder without eliminating shares that don't contain all search term bits
- Can attacker learn search terms?
 - Set bits are different for each archive
 - Set bits are obscured in both index and search filters
- Currently investigating how well this hides information...

Where are we now?

- Working on a prototype with Sandia National Labs
- Investigating tradeoffs in
 - Obfuscation of bit groups
 - Adjust filter size → loading → false hit rate
 - Methods to mitigate false hit rate
 - Methods to increase computational bounds to determine keyr
- Exploring long-term attacks that attempt to correlate searches, even with chaff on both ingest and search
- Working on better ways to split secrets more efficiently
- Rebuilding shares after an archive failure

Wrapping it up

- Long-term archives will be
 - Very large
 - Under constant threat from attacks
 - Lost encryption keys
 - Compromised keys
 - Outdated encryption
- But we need to support search and access!
- Combine secret split archives with searches using Bloom filters with chaff
 - Hides relationships between shares on a single archive
 - Hides relationships between shares across archives
 - Makes compromise much more difficult
- Still much to be done....

Questions?

Collaborators

Joel C. Frank
Shayna M. Frank
Ian F. Adams
Thomas M. Kroeger

http://www.ssrc.ucsc.edu/proj/archive.html