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SYMPTOMS Patient Number: 19204920
Age: 32 years, 11 days
Time since infection: 3 months

Strong case of
“Not Invented Here”

Complains about 
• ACID scalability,
• high availability,
• scale-out,
• partitioning

Obsession with 
“web scale”
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CHALLENGE:
existing models failed (conflict serializability)
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ACROSS SHARDS
OVER WAN LINKS

scalability problems resulted from model,
not from bad implementations

so how did we limit coordination but maintain 
correctness and programmability?
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DIAGNOSIS:
coordination overdose

TREATMENT:
ensure correctness via app-level semantics

e.g., use provided constraints
to ensure ACID consistency
with minimal coordination
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Balanced
Concurrency

Control
1. Let concurrency flourish.

Theorem: if transactions commute under invariants, 
can execute concurrently, without coordination.

Perform query analysis and rewriting to limit 
coordination between processes.

2. Minimize distribution (space and time)    
of conflicting transactions.
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Perfectly Linear S
caling

via Balanced Concurre
ncy Contro

l
Most operations commute
Don’t require locking/blocking

(even for multi-partition FKs)
Contention-agnostic scaling
Query plan for critical sections
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went here



WEBSCALE
ACID TXNS?
YES PLEASE!
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AWWWWW YEAH
TRANSACTIONS
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What changed?
Took a broader view of database consistency:
application-level concerns take center stage

Concurrency-control-aware query planning
(overdue: RC isolation no easier to comprehend than eventual consistency)

Continued maturation of NoSQL stores
RDBMS adoption of fast, replicated primitives

Research community engagement with industry
(e.g, heeded scalability warnings,
        Google released Spanner/F1 workload, benchmark results in 2014)
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Still no sequel to the
zombie pandemic...

Meet NoSQL on their turf
(one isolation level does not fit all)

Beat them at their own game
(scalability, via modern algorithms)

Restore the glory to database systems
(query planning ftw;
 RDBMS is not a dirty word)
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