THIS PRESENTATION HAS BEEN RATED

SIGMOD 2014 PC MEMBERS =~
NC-PC STRONGLY CAUTIONED S

Some material may compromise double-blind reviewing
THE FUTURE OF HUMANITY MAY BE AT STAKE

www.filmratings.com www.mpaa.org

http://www.filmratings.com
http://www.filmratings.com
http://www.mpaa.org
http://www.mpaa.org

WORLD WAR

An aral history of the
Zombie pandemic
(1997-2018)

Peter Balilis
Sept. 23, 2023

ACID
success

1976-1997

.
.

-

1976-1997: ACID
IS a roaring success

" SERIALIZABLE ' *
TRANSACTIONS -~

@ '"Distributed Concurrency Control"

N)
Ul
o
-

>
—
Q
-
O
o
=
<
O
4
©
=
n
-
O
=2
©
S
Qo
-
a

Microsoft”

N Academic

Search

@ '"Distributed Concurrency Control"
‘ IIXMLII

N W
ol o
o -
- -

>
—
Q
-
O
o
=
<
O
4
©
=
n
-
O
=2
©
S
Qo
-
a

Microsoft”

N Academic

Search

1997

NEN 4
(DC

CENTERS FOR DISEASE"
NNNNNNNNNNNNNNNNNNNN

) 1997

1998-2006 e
([
m/'/é/’/,ﬁ

prapmay -

Patient Number: 19204920

Age: 32 years, 11 days

Time since infection: 3 months

SYMPTOMS

Patient Number: 19204920

Age: 32 years, 11 days

Time since infection:

3 months

SYMPTOMS

Complains a

» ACI

) Sca

oout

ability,

* high availabillity,
» scale-out,
» partitioning

Patient Number: 19204920

Age: 32 years, 11 days

Time since infection:

3 months

SYMPTOMS

Complains a

» ACI

) Sca

oout

ability,

* high availabillity,
» scale-out,
» partitioning

Obsession with
‘web scale’

Patient Number: 19204920

Age: 32 years, 11 days

Time since infection:

3 months

Patient Number: 19204920

SYMPTOMS

Age: 32 years, 11 days

Time since infection: 3 months

Complains about
« ACID scalability,
* high availabillity,
» Sscale-out,
» partitioning

Obsession with
‘web scale’

Strong case of
"Not Invented Here®

@ 1997

@) 1998-2008

pun 7",
(DC

CENTERS FOR DISEASE"
NNNNNNNNNNNNNNNNNNNN

1997
() 1998-2008 7’7',"'(¢

7 2008-2018

prapmay
Y
2008-201< II%;’/IJQ

. [(ITE
[H{{LLE |

| _
TLITT A TN _::.: - ——— P
.

e § | e

......;..... "3.:..:—_:,

d.—

___:_: il _ i

i :
»:, Sbabbal .
_

._‘ 1l

ik,

_____________ s

throughput (txns/sec)

160000 | I | 1] | | | | . | 1
VLL with SCA —e—
\ VLL —¢-
140000 \ : i
Calvin
H-Store 55—
120000 | -
100000 } ' i
80000 \/ g
A
60000 |
N
40000 | S -
-~
= _ ¢
20000 | — — .
0 | | | | 1 | | | | | 1
0 5 10 15 20 30 40 50 60 70 80 90 100

% multi-partition transactions

Figure 9: TPC-C throughput.
Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

throughput (txns/sec)

160000

140000

120000

100000

80000

60000

40000

20000

0

- VLL —<
\ Calvin
X H-Store &
A\
N
i - i
=
= -
" L - E] — i
0O 5 10 15 20 30

I I I 1 I | 1 |

VLL with SCA —e—

MORE MULTI PARTITION

TXNs

Figure 9: TPC-C throughput.
Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

throughput (txns/sec)

160000 1] | 1 | 1 1 1 1 | 1

VLL with SCA —e—

140000 VLL -
\ Calvin

B H-Store =
120000 | 40 N$WS -

100000 | -

80000 |- v
A\
60000 |-
N
40000 | < -
~
= -
20000 |- — = = —
0
0 5 10 15 20 30

MORE MULTI PARTITION TXNS

Figure 9: TPC-C throughput.
Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

throughput (txns/sec)

160000

140000

120000

100000

80000

60000

40000

20000

0

- VLL —<
\ Calvin
X H-Store &
A\
N
i - i
=
= -
" L - E] — i
0O 5 10 15 20 30

I I I 1 I | 1 |

VLL with SCA —e—

MORE MULTI PARTITION

TXNs

Figure 9: TPC-C throughput.
Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

1 60000 | I I 1 I | 1 |

| \
\

VLL with SCA —e—
VLL —<¢

Calvin
H-Store -

\/

M. i

O) 60000 |

-

E N

+= 40000 | < -

-~
= -y
20000 | — = = —
0
0 5 10 15 20 30

MORE MULTI PARTITION TXNS

Figure 9: TPC-C throughput.
Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

1 60000 1 I 1 1 I 1 1 1

| \
\

VLL with SC
VL
Calvi
H-Store

\/

p

O 60000 |

>

g X

== 40000 | < -

-
—
— -
20000 |- — H - —
0
0 5 10 15 20 30

MORE IVIULTI PARTITION TXNS
Figure 9: TPC-C throughput.

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

1 60000 1 I 1 1 I 1 1 1

| \
\

VLL with SCA —e—
VLL —<¢

Calvin
H-Store -

\/

p
O 60000 |
>
g X
== 40000 | <
-
—
— -
20000 |- — H - —
0
0 5 10 15 20 30

MORE MULTI PARTITION TXNS

Figure 9: TPC-C throughput.
Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

50000

g 40000 F

K%

(/)]

-

é 30000 |-

S

o

i -

g’ 20000 }-

£ VLL with SCA —e—
VLL —<¢

10000 1 Standard 2PL]
Deadlock-free 2PL

No locking ——

0.0001 | B .0.001 — l(.).01 0.1
contention index

Figure 4: Transactional throughput vs. contention
under a deadlock-free workload.

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

50000 [

40000

30000 [

20000 =

VLL with SCA —e— <

10000 F VLL -
Standard 2PL

Deadlock-free 2PL

No Iockinﬂ N =)
0.0001 0.001 0.01 0.1

INCREASING CONTENTION

throughput (txns/sec)

Figure 4: Transactional throughput vs. contention
under a deadlock-free workload.

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

50000 [

8 40000 |

€

B

-

é 30000 |

S

o

e

g’ 20000 |

£ VLL with SCA —e— X

VLL —<
10000 Standard 2PL
Deadlock-free 2PL

No Iockinﬁ N = ’
0.0001 0.001 0.01 0.1

INCREASING CONTENTION

Figure 4: Transactional throughput vs. contention
under a deadlock-free workload.

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

50000 [

8 40000 |

€

B

-

é 30000 |

S

o

e

g’ 20000 |

£ VLL with SCA —e— X

VLL —<
10000 Standard 2PL
Deadlock-free 2PL

No locking —=—

TR |
0.0001 0.001 0.01 0.1

INCREASING CONTENTION

Figure 4: Transactional throughput vs. contention
under a deadlock-free workload.

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

50000 [

throughput (txns/sec)

10000 [

0.0001 0.001 0.01

INCREASING CONTENTION

Figure 4: Transactional throughput vs. contenti
under a deadlock-free workload.

40000 [

30000 [

20000

VLL with SCA —e— <
VLL —<
Standard 2PL
Deadlock-free 2PL

No locking —=—

TR |
0.1

Lightweight Locking for Main-Memory Database Systems [VL! 013]

50000 [

8 40000 |

0

(7))

-

é 30000 |

S

o

i -

%’ 20000 |

IS VLL with SCA —e— :

VLL —<
10000~ Standard 2PL
Deadlock-free 2PL

No Iockinﬂ N = ’
0.0001 0.001 0.01 0.1

INCREASING CONTENTION

Figure 4: Transactional throughput vs. contenti
under a deadlock-free workload.

Lightweight Locking for Main-Memory Database Systems [VL! 013]

(PROVABLY)

SEMANTICS
MEAN

TRANSACTIONS

(PROVABLY)

SEMANTICS
MEAN

TRANSACTIONS

PURING
UNDER
ACRQSS
QVER

Google Trends

ACID transaction + Add term
Search term
Interest overtime News headlines /? Forecast 2

2005 2007 2009 2011 2013

GOOS[C Trends

ACID transaction NoSQL + Add term
Search term Search term
Interest over time v/ News headlines Forecast 7

— '\/AV\NM‘J

L

%v\v IA/J R

Average 2005 2007 2009 2011 2013

Google Trends

ACID transaction NoSQL zombies + Add term
Search term Search term Search term
Interest overtime v’ News headlines | | Forecast 7.
A
B |
D C
|HG
F E

Average 2005 2007 2009 2011 2013

GO \ lgle web scale database]

web scale database

modern web-scale databases
web scale graph database
mongodb is a web scale database

GOUSIC web scale database

web scale database

modern web-scale databases
web scale graph database
mongodb is a web scale database

‘I
’-.‘

narding is

narding is a technique for
narding is the secret sauce

narding is the secret ingredient
sharing is bad

DIAGNOSIS:

coordination overdose

DIAGNOSIS:

coordination overdose

CHALLENGE:

existing models failed (contflict serializability)

PURING PARTIAL FAILURE
UNDER CONTENTION
ACROSS SHARDS

QVER WAN LINKS

DIAGNOSIS:

coordination overdose

CHALLENGE:

existing models failed (contflict serializability)

PURING PARTIAL FAILURE
UNDER CONTENTION
ACROSS SHARDS

QVER WAN LINKS

scalability problems resulted from model,
not from bad implementations

DIAGNOSIS:

coordination overdose

CHALLENGE:

existing models failed (contflict serializability)

PURING PARTIAL FAILURE
UNDER CONTENTION
ACROSS SHARDS

QVER WAN LINKS

scalability problems resulted from model,
not from bad implementations

sO how did we limit coordination but maintain
correctness and programmability”?

DIAGNOSIS:

coordination overdose

DIAGNOSIS:

coordination overdose

TREATMENT:

ensure correctness via app-level semantics

DIAGNOSIS:

coordination overdose

TREATMENT:

ensure correctness via app-level semantics

e.g., use provided constraints
to ensure ACID consistency
with minimal coordination

Balanced
Concurrency
Control

Balanced
Concurrency
Control

1. Let concurrency flourish.

Balanced
Concurrency
Control

1. Let concurrency flourish.

Theorem: If transactions commute under invariants,
can execute concurrently, without coordination.

Balanced
Concurrency
Control

1. Let concurrency flourish.

Theorem: If transactions commute under invariants,
can execute concurrently, without coordination.

2. Minimize distribution (space and time)
of conflicting transactions.

Balanced
Concurrency
Control

1. Let concurrency flourish.

Theorem: If transactions commute under invariants,
can execute concurrently, without coordination.

2. Minimize distribution (space and time)
of conflicting transactions.

Pertorm query analysis and rewriting to limit
coordination between processes.

1600000 TPC—C Ne\{v-Order Throughputl

1400000
1200000
1000000

800000

600000

L
~~
-
>
=
+J
-
Q
<
o
-
O
—
c
—

400000

200000

O | |
40 60

Number of Servers

1600000 TPC—C Ne\{v-Order Throughputl

1400000
1200000
1000000

800000

600000

L
~~
-
>
=
+J
-
Q
<
o
-
O
—
c
—

400000

200000

O | |
40 60

Number of Servers

1600000 TPC—C Ne\{v-Order Throughputl

1400000
1200000
1000000

800000

600000

L
~~
-
>
=
+J
-
Q
<
o
-
O
—
c
—

400000

200000

O | |
40 60

Number of Servers

1600000

1400000

1200000

1000000

300000

600000

L
~~
-
>
=
+J
-
Q
=
o
-
O
—
c
—

400000

200000

O | |
40 60

Number of Servers

1600000

TPC-C New-Order Throughput

Most operations commute
1400000 | Don’t require locking/blocking
(even for multi-partition FKs)
1200000 | Contention-agnostic scaling
Query plan for critical sections

1000000 |
800000

600000

%
~~
-
>
=
-
-
Q
<
o
-
O
—
e
—

400000

200000

O | |
40 60

Number of Servers

Some results
went here

2015

2005 2010

2000

| | | | | |

— O © < N S

— o - o o o
10J3U0D) ADUaJINDU0D) SIeMY-SOIURWISS

Year

(uol||ig) uone|ndod a1quioZ

o0 O < N -
i i i i i 00) O < N ()
T T T T T T T T
(@)
| - 1
-
N
-
L —
o
™N
—
O
Y
LN
L o
o
N
o
L -
o
N
| | | | | | A
S 00 © < ~ S
— o - - - -

10J3U0D) ADUaJINDU0D) SIBMY-SDIURWIDS

(uol||ig) uone|ndod a1quioZ

N O
~ =~ 0 O < N O
T T T T T T

2015

2010

Year

2005

DARK AGES

2000

| | | | |

© < N S
o (- o o
10J3U0D) ADUaJINDU0D) SIBMY-SDIURWIDS

|
<
—

0.8p

1.0p

O
o

Semantics-Aware Concurrency Control

0.0

O
I
T

NEXT STOP:
DARK AGES

" AWWWWW YEAH
TRANSACTIONS

2000 2005
Year

2010

1 A/
2015

Zombie Population

What changed?

What changed?

Took a broader view of database consistency:
application-level concerns take center stage

What changed?

Took a broader view of database consistency:
application-level concerns take center stage

Concurrency-control-aware guery planning
(overdue: RC isolation no easier to comprehend than eventual consistency)

What changed?

Took a broader view of database consistency:
application-level concerns take center stage

Concurrency-control-aware guery planning
(overdue: RC isolation no easier to comprehend than eventual consistency)

Continued maturation of NoSQL stores
RDBMS adoption of fast, replicated primitives

What changed?

Took a broader view of database consistency:
application-level concerns take center stage

Concurrency-control-aware guery planning
(overdue: RC isolation no easier to comprehend than eventual consistency)

Continued maturation of NoSQL stores
RDBMS adoption of fast, replicated primitives

Research community engagement with industry
(e.g, heeded scalability warnings,
Google released Spanner/F1 workload, benchmark results in 2014)

2013:

2013:

Meet NoSQL on their turf
(one isolation level does not fit all)
Beat them at their own game
(scalability, via modern algorithms)
Restore the glory to database systems
(query planning ftw;
RDBMS is not a dirty word)

2013:

Meet NoSQL on their turf
(one isolation level does not fit all)
Beat them at their own game
(scalability, via modern algorithms)
Restore the glory to database systems
(query planning ftw;
RDBMS is not a dirty word)

2023:

2013:

Meet NoSQL on their turf
(one isolation level does not fit all)
Beat them at their own game
(scalability, via modern algorithms)
Restore the glory to database systems
(query planning ftw;
RDBMS is not a dirty word)

2023:

Still to the
zombie pandemic...

