
THIS PRESENTATION HAS BEEN RATED

SIGMOD 2014 PC MEMBERS
STRONGLY CAUTIONED

Some material may compromise double-blind reviewing

THE FUTURE OF HUMANITY MAY BE AT STAKE

NC-PC

www.filmratings.com www.mpaa.org

http://www.filmratings.com
http://www.filmratings.com
http://www.mpaa.org
http://www.mpaa.org

WORLD WAR

HPTS
An oral history of the

zombie pandemic
(1997-2018)

Peter Bailis
Sept. 23, 2023

1976-1997: ACID
is a roaring success

1976-1997: ACID
is a roaring success

SERIALIZABLE
TRANSACTIONS

`

`

1997

1997
1998-2006

1997
1998-2006

Patient Number: 19204920
Age: 32 years, 11 days
Time since infection: 3 months

SYMPTOMS Patient Number: 19204920
Age: 32 years, 11 days
Time since infection: 3 months

SYMPTOMS Patient Number: 19204920
Age: 32 years, 11 days
Time since infection: 3 months

Complains about
• ACID scalability,
• high availability,
• scale-out,
• partitioning

SYMPTOMS Patient Number: 19204920
Age: 32 years, 11 days
Time since infection: 3 months

Complains about
• ACID scalability,
• high availability,
• scale-out,
• partitioning

Obsession with
“web scale”

SYMPTOMS Patient Number: 19204920
Age: 32 years, 11 days
Time since infection: 3 months

Strong case of
“Not Invented Here”

Complains about
• ACID scalability,
• high availability,
• scale-out,
• partitioning

Obsession with
“web scale”

1997
1998-2008

1997
1998-2008
2008-2018

1997
1998-2008
2008-2018

`

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

MORE MULTI-PARTITION TXNs

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

BAD NEWS

MORE MULTI-PARTITION TXNs

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

MORE MULTI-PARTITION TXNs

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

MORE MULTI-PARTITION TXNs

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

MORE MULTI-PARTITION TXNs

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

MORE MULTI-PARTITION TXNs

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

INCREASING CONTENTION

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

WORSENEWS

INCREASING CONTENTION

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

WORSENEWS

INCREASING CONTENTION

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

WORSENEWS

INCREASING CONTENTION

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

WORSENEWS

INCREASING CONTENTION

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

WORSENEWS

INCREASING CONTENTION

(PROVABLY)
EXPENSIVE
SEMANTICS

MEAN
SLOW

TRANSACTIONS

Lightweight Locking for Main-Memory Database Systems [VLDB 2013]

WORSENEWS

INCREASING CONTENTION

(PROVABLY)
EXPENSIVE
SEMANTICS

MEAN
SLOW

TRANSACTIONS
DURING PARTIAL FAILURE

UNDER CONTENTION
ACROSS SHARDS

OVER WAN LINKS

DIAGNOSIS:
coordination overdose

DIAGNOSIS:
coordination overdose

CHALLENGE:
existing models failed (conflict serializability)
DURING PARTIAL FAILURE
UNDER CONTENTION
ACROSS SHARDS
OVER WAN LINKS

DIAGNOSIS:
coordination overdose

CHALLENGE:
existing models failed (conflict serializability)
DURING PARTIAL FAILURE
UNDER CONTENTION
ACROSS SHARDS
OVER WAN LINKS

scalability problems resulted from model,
not from bad implementations

DIAGNOSIS:
coordination overdose

CHALLENGE:
existing models failed (conflict serializability)
DURING PARTIAL FAILURE
UNDER CONTENTION
ACROSS SHARDS
OVER WAN LINKS

scalability problems resulted from model,
not from bad implementations

so how did we limit coordination but maintain
correctness and programmability?

DIAGNOSIS:
coordination overdose

DIAGNOSIS:
coordination overdose

TREATMENT:
ensure correctness via app-level semantics

DIAGNOSIS:
coordination overdose

TREATMENT:
ensure correctness via app-level semantics

e.g., use provided constraints
to ensure ACID consistency
with minimal coordination

Balanced
Concurrency

Control

Balanced
Concurrency

Control
1. Let concurrency flourish.

Balanced
Concurrency

Control
1. Let concurrency flourish.

Theorem: if transactions commute under invariants,
can execute concurrently, without coordination.

Balanced
Concurrency

Control
1. Let concurrency flourish.

Theorem: if transactions commute under invariants,
can execute concurrently, without coordination.

2. Minimize distribution (space and time)
of conflicting transactions.

Balanced
Concurrency

Control
1. Let concurrency flourish.

Theorem: if transactions commute under invariants,
can execute concurrently, without coordination.

Perform query analysis and rewriting to limit
coordination between processes.

2. Minimize distribution (space and time)
of conflicting transactions.

Oracle World Record

Oracle World Record

Perfectly Linear S
caling

via Balanced Concurre
ncy Contro

l

Oracle World Record

Perfectly Linear S
caling

via Balanced Concurre
ncy Contro

l
Most operations commute
Don’t require locking/blocking

(even for multi-partition FKs)
Contention-agnostic scaling
Query plan for critical sections

Some results
went here

WEBSCALE
ACID TXNS?
YES PLEASE!

NEXT STOP:
DARK AGES

NEXT STOP:
DARK AGES

AWWWWW YEAH
TRANSACTIONS

What changed?

What changed?
Took a broader view of database consistency:
application-level concerns take center stage

What changed?
Took a broader view of database consistency:
application-level concerns take center stage

Concurrency-control-aware query planning
(overdue: RC isolation no easier to comprehend than eventual consistency)

What changed?
Took a broader view of database consistency:
application-level concerns take center stage

Concurrency-control-aware query planning
(overdue: RC isolation no easier to comprehend than eventual consistency)

Continued maturation of NoSQL stores
RDBMS adoption of fast, replicated primitives

What changed?
Took a broader view of database consistency:
application-level concerns take center stage

Concurrency-control-aware query planning
(overdue: RC isolation no easier to comprehend than eventual consistency)

Continued maturation of NoSQL stores
RDBMS adoption of fast, replicated primitives

Research community engagement with industry
(e.g, heeded scalability warnings,
 Google released Spanner/F1 workload, benchmark results in 2014)

2013:

Meet NoSQL on their turf
(one isolation level does not fit all)

Beat them at their own game
(scalability, via modern algorithms)

Restore the glory to database systems
(query planning ftw;
 RDBMS is not a dirty word)

2013:

Meet NoSQL on their turf
(one isolation level does not fit all)

Beat them at their own game
(scalability, via modern algorithms)

Restore the glory to database systems
(query planning ftw;
 RDBMS is not a dirty word)

2023:

2013:

Still no sequel to the
zombie pandemic...

Meet NoSQL on their turf
(one isolation level does not fit all)

Beat them at their own game
(scalability, via modern algorithms)

Restore the glory to database systems
(query planning ftw;
 RDBMS is not a dirty word)

2023:

2013:

