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Patient Number: 19204920

SYMPTOMS

Age: 32 years, 11 days

Time since infection: 3 months

Complains about
« ACID scalability,
* high availabillity,
» Sscale-out,
» partitioning

Obsession with
‘web scale’

Strong case of
"Not Invented Here®
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Figure 9: TPC-C throughput.
Lightweight Locking for Main-Memory Database Systems [VLDB 2013]
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modern web-scale databases
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narding is a technique for
narding is the secret sauce

narding is the secret ingredient
sharing is bad
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CHALLENGE:

existing models failed (contflict serializability)

PURING PARTIAL FAILURE
UNDER CONTENTION
ACROSS SHARDS

QVER WAN LINKS

scalability problems resulted from model,
not from bad implementations

sO how did we limit coordination but maintain
correctness and programmability”?
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DIAGNOSIS:

coordination overdose

TREATMENT:

ensure correctness via app-level semantics

e.g., use provided constraints
to ensure ACID consistency
with minimal coordination
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Balanced
Concurrency
Control

1. Let concurrency flourish.

Theorem: If transactions commute under invariants,
can execute concurrently, without coordination.

2. Minimize distribution (space and time)
of conflicting transactions.

Pertorm query analysis and rewriting to limit
coordination between processes.
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What changed?

Took a broader view of database consistency:
application-level concerns take center stage

Concurrency-control-aware guery planning
(overdue: RC isolation no easier to comprehend than eventual consistency)

Continued maturation of NoSQL stores
RDBMS adoption of fast, replicated primitives

Research community engagement with industry
(e.g, heeded scalability warnings,
Google released Spanner/F1 workload, benchmark results in 2014)
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2013:

Meet NoSQL on their turf
(one isolation level does not fit all)
Beat them at their own game
(scalability, via modern algorithms)
Restore the glory to database systems
(query planning ftw;
RDBMS is not a dirty word)

2023:

Still to the
zombie pandemic...




