THIS PRESENTATION HAS BEEN RATED

NC-PC

SIGMOD 2014 PC MEMBERS STRONGLY CAUTIONED

Some material may compromise double-blind reviewing

THE FUTURE OF HUMANITY MAY BE AT STAKE

www.filmratings.com

www.mpaa.org

CENTERS FOR DISEASE TO CONTROL AND PREVENTION

Patient Number: 19204920

Age: 32 years, 11 days

Patient Number: 19204920

Age: 32 years, 11 days

Complains about

- ACID scalability,
- high availability,
- scale-out,
- partitioning

Patient Number: 19204920

Age: 32 years, 11 days

Complains about

- ACID scalability,
- high availability,
- scale-out,
- partitioning

Obsession with "web scale"

Patient Number: 19204920

Age: 32 years, 11 days

Complains about

- ACID scalability,
- high availability,
- scale-out,
- partitioning

Obsession with "web scale"

Strong case of "Not Invented Here" Patient Number: 19204920

Age: 32 years, 11 days

CENTERS FOR DISEASE TO CONTROL AND PREVENTION

Figure 9: TPC-C throughput.

Figure 4: Transactional throughput vs. contention under a deadlock-free workload.

Figure 4: Transactional throughput vs. contention under a deadlock-free workload.

Figure 4: Transactional throughput vs. contention under a deadlock-free workload.

Figure 4: Transactional throughput vs. contention under a deadlock-free workload.

INCREASING CONTENTION

Figure 4: Transactional throughput vs. contention under a deadlock-free workload.

Figure 4: Transactional throughput vs. contention under a deadlock-free workload.

Figure 4: Transactional throughput vs. contention under a deadlock-free workload.

DURING PARTIAL FAILURE
Figure 4: Transactional th UNDER CONTENTION
under a deadlock-free workload. ACROSS SHARDS
Lightweight Locking for Main-OVER WANTENKS

ACID transaction
Search term

+ Add term

ACID transaction
Search term

NoSQL Search term

+ Add term

ACID transaction

Search term

NoSQL Search term zombies Search term

+ Add term

web scale database

web scale database
modern web-scale databases
web scale graph database
mongodb is a web scale database

web scale database

web scale database
modern web-scale databases
web scale graph database
mongodb is a web scale database

sharding is

sharding is a technique for sharding is the secret sauce sharding is the secret ingredient sharing is bad

DIAGNOSIS:coordination overdose

coordination overdose

CHALLENGE:

existing models failed (conflict serializability)

DURING PARTIAL FAILURE UNDER CONTENTION ACROSS SHARDS OVER WAN LINKS

coordination overdose

CHALLENGE:

existing models failed (conflict serializability)

PURING PARTIAL FAILURE UNDER CONTENTION ACROSS SHARDS OVER WAN LINKS

scalability problems resulted from **model**, **not** from bad implementations

coordination overdose

CHALLENGE:

existing models failed (conflict serializability)

DURING PARTIAL FAILURE UNDER CONTENTION ACROSS SHARDS OVER WAN LINKS

scalability problems resulted from **model**, **not** from bad implementations

so how did we limit coordination but maintain correctness and programmability?

DIAGNOSIS:coordination overdose

coordination overdose

TREATMENT:

ensure correctness via app-level semantics

coordination overdose

TREATMENT:

ensure correctness via app-level semantics

e.g., use provided constraints to ensure ACID consistency with minimal coordination

1. Let concurrency flourish.

1. Let concurrency flourish.

Theorem: if transactions commute under invariants, can execute concurrently, without coordination.

1. Let concurrency flourish.

Theorem: if transactions commute under invariants, can execute concurrently, without coordination.

2. Minimize distribution (space and time) of conflicting transactions.

1. Let concurrency flourish.

Theorem: if transactions commute under invariants, can execute concurrently, without coordination.

2. Minimize distribution (space and time) of conflicting transactions.

Perform query analysis and rewriting to limit coordination between processes.

Some results went here

Took a broader view of database consistency: application-level concerns take center stage

Took a broader view of database consistency: application-level concerns take center stage

Concurrency-control-aware query planning (overdue: RC isolation no easier to comprehend than eventual consistency)

Took a broader view of database consistency: application-level concerns take center stage

Concurrency-control-aware query planning (overdue: RC isolation no easier to comprehend than eventual consistency)

Continued maturation of NoSQL stores RDBMS adoption of fast, replicated primitives

Took a broader view of database consistency: application-level concerns take center stage

Concurrency-control-aware query planning (overdue: RC isolation no easier to comprehend than eventual consistency)

Continued maturation of NoSQL stores RDBMS adoption of fast, replicated primitives

Research community engagement with industry (e.g, heeded scalability warnings, Google released Spanner/F1 workload, benchmark results in 2014)

Meet NoSQL on their turf
(one isolation level does **not** fit all)
Beat them at their own game
(scalability, via modern algorithms)
Restore the glory to database systems
(query planning ftw;
RDBMS is not a dirty word)

Meet NoSQL on their turf

(one isolation level does **not** fit all)

Beat them at their own game
(scalability, via modern algorithms)

Restore the glory to database systems
(query planning ftw;
RDBMS is not a dirty word)

2023:

Meet NoSQL on their turf

(one isolation level does **not** fit all)

Beat them at their own game

(scalability, via modern algorithms)

Restore the glory to database systems

(query planning ftw;

RDBMS is not a dirty word)

2023:

Still THE SECULATION the zombie pandemic...

