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Motivation - OLTP vs. OLAP

OLTP and OLAP have very different requirements

• OLTP
• high rate of small/tiny transactions
• high locality in data access
• update performance is critical

• OLAP
• few, but long running transactions
• aggregates large parts of the database
• must see a consistent database state the whole time

Traditionally, DBMSs either good at OLTP or good at OLAP
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Motivation - Traditional Solution
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not very satisfying. stale data, redundancy, etc.
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Motivation - Hardware Trends

Intel
Tera Scale Initiative
Server with 1 TB main memory
ca. 40K Euro from Dell

• main memory grows faster than
(business) data

• can afford to keep data in memory

• memory is not just a fast disk

• should make use of this facts

Amazon

Data Volume
Revenue: 25 billion Euro
Avg. Item Price: 15 Euro
ca. 1.6 billion order lines per year
ca. 54 Bytes per order line
ca. 90 GB per year
+ additional data - compression

Transaction Rate
Avg: 32 orders per s
Peak rate: Thousands/s
+ inquiries
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HyPer

Our system

HyPer

Hybrid

OLTP&OLAP

High-Performance

Database

System

OLTP Requests /Tx OLAP Queries

Combined OLTP/OLAP system using modern hardware

Thomas Neumann HyPer 5 / 18



HyPer - Design

• OLTP performance is crucial

• avoid anything that would slow down OLTP

• OLTP should operate as if there were no OLAP

• OLAP is not that performance sensitive, but needs consistency

• locking/latching is out of question (OLAP would slow down OLTP)

Idea: we are a main memory database. Use hardware support.
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HyPer - Pure OLTP workload

OLTP Requests /Tx

Main Memory

• purely main memory, OLTP transactions need a few µs

• can afford serial execution of transactions (at least initially)

• avoids any concurrency issues
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HyPer - Virtual Memory Supported Snapshots
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• OLAP sessions need a consistent snapshot over a relatively long time

• use the MMU / OS support to separate OLTP and OLAP

• the fork separates OLTP from OLAP, even though they are initially
the same
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HyPer - Copy on Update
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• the MMU detects writes to shared data

• modified pages are copied, both parts have unique copies afterwards

• avoids any interaction between OLTP and OLAP

• like an ultra-efficient shadow paging without the disadvantages
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HyPer - Snapshots

We use fork to create transaction consistent snapshots

• each OLAP sessions sees one certain point in time

• can do long-running aggregates/analysis

• the data (apparently) stays the same

• if it changes, the MMU makes sure that OLAP does not notice

• eliminates need for latching/locking

And fork is cheap!

• only the page table is copied, not the pages themselves

• some care is needed to scale to large memory sizes

• but can fork 40GB in 2.7ms
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HyPer - Missing Pieces
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• multiple OLAP sessions, each copies just what is needed
• logging is needed for ACID properties
• backups for fast restart
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Data-Centric Query Execution
HyPer does not use the classical iterator model

Why does the iterator model (and its variants) use the operator structure
for execution?

• it is convenient, and feels natural

• the operator structure is there anyway

• but otherwise the operators only describe the data flow

• in particular operator boundaries are somewhat arbitrary

What we really want is data centric query execution

• data should be read/written as rarely as possible

• data should be kept in CPU registers as much as possible

• the code should center around the data,
not the data move according to the code

• increase locality, reduce branching
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Data-Centric Query Execution (2)
Processing is oriented along pipeline fragments.

Corresponding code fragments:

initialize memory of Ba=b, Bc=z , and Γz

for each tuple t in R1

if t.x = 7
materialize t in hash table of Ba=b

for each tuple t in R2

if t.y = 3
aggregate t in hash table of Γz

for each tuple t in Γz

materialize t in hash table of Bz=c

for each tuple t3 in R3

for each match t2 in Bz=c [t3.c]
for each match t1 in Ba=b[t3.b]

output t1 ◦ t2 ◦ t3

R1

R2 R3

x=7

y=3

z;count(*)

a=b

z=c
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Data-Centric Query Execution (3)
The algebraic expression is translated into query fragments.

Each operator has two interfaces:

1. produce
• asks the operator to produce tuples and push it into

2. consume
• which accepts the tuple and pushes it further up

Note: only a mental model!

• the functions are not really called

• they only exist conceptually during code generation

• each “call” generates the corresponding code

• operator boundaries are blurred, code centers around data

• we generate machine code at compile time

• initially using C++, now using LLVM
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Evaluation

We used a combined TPC-C and TPC-H benchmark (12 warehouses)
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• TPC-C transactions are unmodified

• TPC-H queries adapted to the combined schema

• OLTP and OLAP runs in parallel
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TPC-C+H Performance
HyPer configurations MonetDB VoltDB

one query session (stream) 3 query sessions (streams) no OLTP no OLAP
single threaded OLTP 5 OLTP threads 1 query stream only OLTP
OLTP Query resp. OLTP Query resp. Query resp. results from

Query No. throughput times (ms) throughput times (ms) times (ms) VoltDB web page
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Q2 163 212 210
Q3 66 73 75
Q4 194 226 6003
Q5 1276 1564 5930
Q6 9 17 123
Q7 1151 1466 1713
Q8 399 593 172
Q9 206 249 208
Q10 1871 2260 6209
Q11 33 35 35
Q12 156 170 192
Q13 185 229 284
Q14 122 156 722
Q15 528 792 533
Q16 1353 1500 3562
Q17 159 168 342
Q18 108 119 2505
Q19 103 183 1698
Q20 114 197 750
Q21 46 50 329
Q22 7 9 141

Dual Intel X5570 Quad-Core-CPU, 64GB RAM, RHEL 5.4
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Memory Consumption
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A. OLTP only
B. Hybrid (idle OLAP)

C. Hybrid (idle OLAP, respawned)

• we only have to replicate the working set
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Conclusion

• main memory databases change the game

• very high throughput, transactions should never wait

• minimize latching and locks to get best performance

• use MMU support instead to separate OLTP and OLAP

• compiled, data-centric queries for excellent performance

HyPer is a very fast hybrid OLTP/OLAP system

• top performance for both OLTP and OLAP

• full ACID support

It is indeed possible to build a combined OLTP/OLAP system!
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