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Energy is Shaping the IT Industry

#1 of Grand Challenges for Humanity in the Next 50 Years

[Smalley Institute for Nanoscale Research and Technology, Rice U.]

A 1,000m?2 datacenter is 1.5MW!

eDatacenter energy consumption in US >100 TWh in 2011 [EpA]
o 2.5% of domestic power generation, $7.4B

eGlobal computing consumed ~408 TWh in 2010 [Gartner]

eCarbon footprint of world’s data centers = Czech Republic
*CO,-equiv. emissions of US datacenters = Airline Industry (2%)

e 10% annual growth on installed computers worldwide

[CAartnarl

®» Exponential increase in energy consumption
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Scaling Factor

Application Dataset Scaling
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®» Application datasets scale faster than Moore’s Law!
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Datasets Grow Exponentially

e SPEC and TPC datasets grow faster than Moore’s Law
e Large Hadron Collider

o March 2011: 1.6PB data produced and transferred to Tier-1
e Large Synoptic Survey Telescope

a Produces 30 TB/night

0 Roughly equivalent to 2 Sloan Digital Sky Surveys daily

= Sloan produced more data than entire history of
astronomy before it

e Massive data require massive computations to process them

®» Exponential increase in energy consumption
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Exponential Growth of Core Counts
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®» Does performance follow same curve?
5

© Hardavellas



MCCormick
Northwestern Engineering

Performance Expectations vs. Reality
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®» Physical constraints limit speedup
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Pin Bandwidth Scaling
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®» Cannot feed cores with data fast enough
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Supply Voltage Scaling
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®» Cannot power up all transistors simultaneously = Dark Silicon
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Chip Power Scaling
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®» Cooling does not scale!
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Range of Operational Voltage
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[Watanabe et al., ISCA'10]

®» Shrinking range of operational voltage hampers voltage-freq. scaling
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Where Does Server Energy Go?

Many sources of power consumption:
eServer only [Fan, ISCA’07]

a Processor chips (37%)

a Memory (17%)

a Peripherals (29%)

a ...
e|nfrastructure (another 50%)

o Cooling

o Power distribution

11
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A Study of Server Chip Scalability

e Actual server workloads today
o Easily parallelizable (performance-scalable)

e Actual physical char. of processors/memory
o ITRS projections for technology nodes
o Modeled power/performance across nodes

e For server chips
0 Bandwidth is near-term limiter
— Energy is the ultimate limiter

12
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First-Order Analytical Modeling

[Hardavellas, IEEE Micro 2011]

Physical characteristics modeled after UltraSPARC T2, ARM11
® Area: Cores + caches = 72% die, scaled across technologies
" Power: ITRS projections of V4, Vi, Conter lsubr Woater So
o Active: cores=f(GHz), cache=f(access rate), NoC=f(hops)
o Leakage: f(area), f(devices), 66°C
o Devices/ITRS: Bulk Planar CMQOS, UTB-FD SOI, FinFETs, HP/LOP
® Bandwidth:
o ITRS projections on 1/O pins, off-chip clock, f(miss, GHz)
®  Performance: CPl model based on miss rate

gate’ 'sub’

o Parameters from real server workloads (DB2, Oracle, Apache)
o Cache miss rate model (validated), Amdahl & Myhrvold Laws
13
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Caveats

e First-order model

o The intent is to uncover trends relating the effects of
technology-driven physical constraints to the performance
of commercial workloads running on multicores

a The intent is NOT to offer absolute numbers

e Performance model works well for workloads with low MLP

o Database (OLTP, DSS) and web workloads are mostly
memory-latency-bound

e Workloads are assumed parallel

o Scaling server workloads is reasonable

14 © Hardavellas
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Good news: can fit 100’s cores. Bad news: cannot power them all
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Pack More Slower Cores, Cheaper Cache
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®» The reality of The Power Wall: a power-performance trade-off
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Pin Bandwidth Constraint
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®» Bandwidth constraint favors fewer + slower cores, more cache
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Example of Optimization Results
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®» Jointly optimize parameters, subject to constraints, SW trends

®» Design is first bandwidth-constrained, then power-constrained
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Core Counts for Peak-Performance Designs
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®» Designs > 120 cores impractical for general-purpose server apps

» B/W and power envelopes + dataset scaling limit core counts
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Short-Term Scaling Implications

Caches are getting huge
eNeed cache architectures to deal with >> MB

—Elastic Caches
- Adapt behavior to executing workload to minimize transfers
o Reactive NUCA [Hardavellas, ISCA 2009][Hardavellas, IEEE Micro 2010]
o Dynamic Directories [Das, NUTR 2010, in submission]
o ...but that’s another talk...

®» Need to push back the bandwidth wall!!!

20
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Mitigating Bandwidth leltatlons 3D- stacklng

DRAM Cells
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[Loh et al., ISCA’08]

®» Delivers TB/sec of bandwidth; use as large “in-package” cache
21
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Performance Analysis of 3D-Stacked Multicores
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®» Chip becomes power-constrained
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The Rise of Dark Silicon

Transistor counts increase exponentially, but...

Can no longer power the entire chip Traditional HW power-aware
(voltages, cooling do not scale) techniques inadequate
] == Transistor Scaling (e.g., voltage-freq. scaling)
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Exponentially-Large Area Left Unutilized

-®- Max Die Size DB2-TPCC
DB2-TPCH Apache
—Trendline (exp.)
512 -
~
S r————0———0
£ 256 - b~
o —
o e —
N
© 128 -
()]
64 T T I T
2004 2007 2010 2013 2016 2019
Year

®» Should we waste it?
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Repurpose Dark Silicon for Specialized Cores
[Hardavellas, IEEE Micro 2011]

e Don’t waste it; harness it instead!

o Use dark silicon to implement specialized cores
e Applications cherry-pick few cores, rest of chip is powered off
e Vast unused area = many cores -2 likely to find good matches

25
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Overheads of General-Purpose Processors
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®» Core specialization will minimize most overheads
®» ASICs ~100-700x more efficient than general-purpose cores
26
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First-Order Core Specialization Model

e Modeling of physically-constrained CMPs across technologies

e Model of specialized cores based on ASIC implementation of H.264:
o Implementations on custom HW (ASICs), FPGAs, multicores (CMP)
o Wide range of computational motifs, extensively studied

Frames Energy per Performance gap Energy gap of
per sec frame (m)J) of CMP vs. ASIC CMP vs. ASIC
ASIC 30 4
IME 0.06 1179 525x 707X
FME 0.08 921 342x 468x
CMP
Intra 0.48 137 63X 157x

[Hameed et al., ISCA 2010]
» 12x LOWER ENERGY compared to best conventional alternative
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Specialized Multicores: Power Only Few Cores
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®» Only few cores need to run at a time for max speedup

®» Vast unused die area will allow many cores
28
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The New Core Design

[analogy by A. Chien]

®» From fat conventional cores, to a sea of specialized cores

29
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The New Multicore

®» Power up only what you need
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Design for Dark Silicon: Many Open Questions

To get 12x lower energy (12x performance for same power budget):

e\Which candidates are best for off-loading to specialized cores?
e\What should these cores look like?

o Exploit commonalities to avoid core over-specialization

o Can we classify all computations into 10 bins?

e\What are the appropriate language/compiler/runtime techniques
to drive execution migration?

0 Impact on scheduler?
eHow to restructure software/algorithms for heterogeneity?
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The New Multicore Node
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Can push further with more exotic technologies
(e.g., nanophotonics) ...but that's another talk

®» Specialized cores + 3D-die memory stacking

32
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Thank You!
Questions?
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If you want to know more about my “other talks” come find me!



