
High Performance Transaction Systems Biennial 2005 Page 1

Patterns for SLM

- Refactoring & Integrating
Services & Infrastructure

James Baty
Distinguished Engineer, VP & CTO
Sun Microsystems
Global Sales & Client Solutions
September 28, 2005

High Performance Transaction Systems Biennial 2005 Page 2

Shifting to the Network Enterprise

● Predictable QoS is never more important & more complex
● Achieving SLM requires real time architectural synchronization between the

distributed fabrics of Services and Systems
● Network virtualization is key, patterns are the methodology, but the

knowledge engineering is challenging

● Applications are evolving toward
assembly (via coordination /
orchestration) of highly distributed
services

● The 'Data Center' is assembled from
heterogeneous compute & storage
resources and the interconnecting
network

High Performance Transaction Systems Biennial 2005 Page 3

Goal – enable dynamic application
lifecycle mobility over virtual platform

To manage TTM, Response, Throughput, Availability ...

High Performance Transaction Systems Biennial 2005 Page 4

Patterns (SW & HW) for Service levels

We virtualize IT for business
goals . We use patterns:
- to refactor functionality,
technology & processes.
- to continuously/dynamically
optimize applications &
resources for Service Levels

Refactoring is a
disciplined
technique for
restructuring an
existing body of
code, altering its
internal structure
without changing
its external
behavior.
(M. Fowler)

Virtualization is a framework or methodology of dividing the
resources of a computer into multiple execution
environments, by applying one or more concepts or
technologies such as hardware and software partitioning, time-
sharing, partial or complete machine simulation, emulation,
quality of service, and many others. (A. Singh)

Optimization is the procedure or procedures used to make
a system or design as effective or functional as possible.
(Lexico)

Design Patterns
are recurring
solutions to
software design
problems you find
again and again in
real-world
application
development.
(GOF)

High Performance Transaction Systems Biennial 2005 Page 5

Key 'technology' - Design Patterns

" Core J2EE Patterns
" Basic design elements

Intercepting Filter
Front Controller
Composite View
View Helper
Service to Worker
Dispatcher View
Business Delegate
Service Locator
Session Façade
Value Object
Composite Entity
Value Object Assembler
Value List handler
Data Access Object
Service Activator

Sun ONE Patterns
fr. Web Services Use Cases
" Create Service
" Assemble Service
" Deploy Service
" Register Service
" Discover Service
" Consume Service
" Authenticate Service
" Authorize Service
" Monitor Service

Pattern Definition Template
Name – unique, descriptive name
Problem – design problem to be solved
Context – environment of pattern
Forces – reasons & motivation for selection
Solution – describe approach
Strategies – different ways to implement
Consequences – pros & cons, trade-offs

SOA Patterns
fr. business modeling
"

Higher level abstraction

High Performance Transaction Systems Biennial 2005 Page 6

Encapsulating SOA Architecture as Patterns
● Capture common business requirements
● Represent common architectures
● Support modular design

EAI via Portal

B2B Style

EAI w/ Coordination

Fundamental
Patterns

Document
based

Mostly
Async

Secure /
Identity

BPEL
Orchestrated

Functional
Elaboration

Putting it all
together

combining patterns /styles / rules
to develop integrated design

High Performance Transaction Systems Biennial 2005 Page 7

Now Extending Patterns to Infrastructure
- e.g., Directory services architecture

Core Directory
Elements
(Master, Replica,
Consumer, Load
Balancer)

N-Tier Micro-
Architecture
Pattern

Deployment/Build
Pattern

C

M R

Composition and implementation

High Performance Transaction Systems Biennial 2005 Page 8

Combining tier 0 patterns for SLM
- combine basic design elements to develop component micro-architectures
- increasing Service Level control
- assemble micro-architecture into larger designs
- implement in alternative technologies

 A brief history of
“load balancing”

— Ancient history – hacks
● Lbnamed, RR-DNS
● Simple load balancing

– Recent past – HW/SW products

● Resonate, Local Director
● Complex policies + failover

– Today – Network function

● Alteon, Arrowpoint
● Sun Secure Application Switch
● Add SSL & wireline speed

 Same pattern – different
strategies

High Performance Transaction Systems Biennial 2005 Page 9

Moving from 'static' to virtual architecture
 enables implementation of a service model

Hard / static wired
bastion hosts
direct storage

VLAN
virtual tiers

SAN
VLANs/Load Balancing
'zones' w/ svc modules

SAN Pools

Increased Virtualization

High Performance Transaction Systems Biennial 2005 Page 10

Deploying Patterns - Service Delivery Network
 - Grouping services into Network Domains

Service Delivery
Interface

Integration
Security Module

Distribution Module
(vSwitch 3)

Presentation
Service Module

(vSwitch1)

Service Security
Module

Supporting
Service Module

(vSwitch 2)

SD-dir

SD-web1

SD –mta SD-j2ee1

SD - db

SC

v1 v2 v3

SC

SC SC

SC SC
SC SC
SC SC

VIP

VIP

VIP

Client Connections
(Internet, Provider

Networks)

Service modules
network hardware
(N2000 + Layer 2) ,

physical conn.,
grouped based on

security, & perf.

Security Services
- iForce Perimeter
 Security Solution
- Firewalls
- VPNS
- IDS, ...

Distribution
Module
for Scalability,
Security,
Common
Services
(e.g., cache)

Optional DSM
provides additional
security for any
Service Domain

Optional
Security
Module

Service Domains
consist of

Containers with
similar services

and security reqs.

High Performance Transaction Systems Biennial 2005 Page 11

3 Issues –
 1- heavy lifting - Harvest & refactor Admin Use Cases / Patterns

For Each Service
• Determine and set up range of IP addresses
• Physically or logically setup LAN
• Physically and logically layout storage
• Setup firewalls
• Setup load balancing clusters
• Setup HA clusters
• Setup mid-tier clusters
• . . .

 Provision server (physically acquire)
• Connect to network— acquire IP address, etc.,

NIS name, DNS name, LDAP name, etc.
• Install OS and relevant patches (the latter sometimes takes longer than OS)
• Install and configure Volume Management (optional)
• Install and configure 3rd party file systems (optional)
• Install clustering software (optional)
• Install management framework probes/agents, etc.
• Install Application software (traditionally to local storage)
• Tune O/S for software (rare these days except for DB)
• Configure application software part 1— bind to the O/S, use IP addresses, etc.
• Configure application software part 2— give it an identity in terms of the service

(database name, etc.)
• Start the application
• . . .

• Create Service
• Deploy Service
• Modify Service
• Destroy Service

Do this thing
Intention ResponsibilityMove:

from this
to this

• Concentrate on "what", not "how"
• Capture requirements in terms of behavior
• Identify clear roles and responsibilities
• Abstract design from implementation

For Each Server

High Performance Transaction Systems Biennial 2005 Page 12

3 Issues
 2 – Grand Challenge – Integrating Service Configuration & Deployment

Managed Services

Observability
Framework

Regulation Framework

Provisioning
Framework

Applications
Middleware

OS
Server

Storage
Network

<-- N1 Grid SPS
(CenterRun)

<-- Jumpstart

<-- Other

BMC Patrol -->

SunMC -->

Others -->

Coordinator

Policy

Regulator Rep-
osit-
ory

Control
 - Resource
 Allocation
 (Static/Dynamic
 Deployment).

Optimization
 – Regulation/Governance
 -- automated decision making
 -- service level arbitration

Service Containers
 – The Target -- That which is being
 controlled, observed and optimized.

Observability
 -- Visibility of
 changes in the
 environment.

High Performance Transaction Systems Biennial 2005 Page 13

scalability

availability

performance

manageability

security

flexibility

portability
maintainability

-

-
-

+

-

-
-

-
- -

+
+

+

-

-
--

-

Non-functional Characteristics Forces Interaction Model

3 Issues
 3 – Conceptual Barrier - Identifying “Context & Forces”

Portability

Scalability

Availability
Manageability

Security

Maintainability
Flexibility

Performance

Context – environment of pattern
Forces – reasons & motivation for selection

