Greenfield et al
HPTS 2003 Position Paper.

What are the consistency requirements for B2B systems?

Paul Greenfield1, Alan Fekete2, Julian Jang1 and Dean Kuo1

1CSIRO Mathematical and Information Sciences

GPO Box 664 ACTON ACT 2601 Australia

{ QUOTE "{WebSphere MQ Workflow #200}" paul.greenfield, julian.jang, dean.kuo}@csiro.au

2School of Information Technologies, Madsen Building F09

University of Sydney NSW 2006 Australia

fekete@it.usyd.edu.au

1 Introduction

One important trend in enterprise-scale IT has been the increasing use of business-to-business integration (B2Bi) technologies to automate business processes that cross organisational boundaries. Tools such as BizTalk Server QUOTE "[1]"
[1]
 and WebSphere MQ Workflow QUOTE "[4]"
[4]
, and standards such as WSCI QUOTE "[3]"
[3]
 and BPEL4WS QUOTE "[2]"
[2]
, make it fairly easy to design and construct this kind of integrated system. Current technology does not, however, make it easy to design reliable applications: ones that can deal with events that cause deviations from normal processing paths, such as failures and concurrent activities, while still maintaining overall, cross-organisational consistency. The industry has accepted a de facto standard approach to the problems of failure and consistency by offering a common collection of primitives based on ACID transactions for small steps and on application-provided fault-handlers and compensators for larger scopes. This position paper argues that this is still insufficient for the needs of the B2B domain. We are engaged in a research project that aims to provide improved infrastructure mechanisms and architectural design guidance that will allow developers to routinely create reliable B2B applications. This position paper discusses some key requirements that will need to be met if we are to achieve this goal.

2 Characteristics of B2B applications

This section describes a number of important characteristics of B2B applications, drawn from an e-procurement example. Some of these characteristics have already been identified in a number of existing advanced/extended transaction models QUOTE "[5]"
[5]
.

· B2B protocols and the business processes participating in these protocols are long duration, lasting from minutes, to days, months and beyond.

· The interactions between the components in these systems are stateful and peer-to-peer.
· The interactions between the components must be compatible – that is, when one component sends a message to another component, the destination component must be expecting that message, and whenever a component is awaiting the arrival of a message, some other component must (eventually) send a message of the anticipated type.

· A business transaction typically has some persistent effect on the overall system state, even if a failure has occurred. For example, just rolling back is not an appropriate response to an order being cancelled. The existence and outcome of the attempted order have to be recorded, and there may be other consequences such as the imposition of cancellation fees.

· In most situations, a component participating in a B2B transaction cannot unilaterally cancel (abort) a business transaction – for example, once a merchant has accepted a purchase order, neither the customer nor merchant can unilaterally cancel the order. Even if the order can be cancelled, the subsequent process is often complex, perhaps goods may need to be returned to the merchant and checked before the process can continue, and there is no guarantee that the return goods process will be successful. We need to be able to deal with problems that can arise during cancellation of an order and cannot just assume that a cancellation will always be successful.
· When a failure/exception/fault occurs in a business process or a B2B contract, there are typically many possible ways to handle the fault and it is not always the case that the business transaction itself has to be cancelled. For example, in e-procurement, if goods are unavailable due to a delay in a backorder, possible ways to handle the fault include delaying delivery and partial fulfilment - only as a last resort will the business transaction be cancelled.

· Interactions between components are typically asynchronous and race conditions can often complicate the B2B protocol and business process implementation. This problem may be made worse by incomplete knowledge of the overall system state at the time of failure.
· Another important characteristic of a B2B application is that the components participating in the B2B protocol often belong to different trust domains. Components in one domain will have minimal control over the behaviour of components belonging to another trust domain.

· A business process may depend on the outcomes of concurrently executing business processes. In the e-procurement example, a customer order process may depend on the completion of a backorder process.

· Business processes may also require that other concurrent business processes not interfere with their execution. For example, stock reserved for a customer by one instance of the order process cannot be taken to fulfil another customer order. In ConTract QUOTE "[7]"
[7]
, a business process defines correctness with respect to concurr
ency by explicitly specifying a set of constraints for each activity in a business process that have to be met if it is to execute correctly.
· Fault handling cannot be automated under all circumstances. The best approach for the most complex and rare faults may well be to get a human to handle them.

· A business transaction interacts with the real world, including the people in it. This interaction can create another source of faults if the representation of the real world (abstract state) recorded in a database does not match the state of the real world.

· Timeliness can also be an important property in B2B protocols and business processes. A process may need to specify when activities need to occur, and if they do not, how it should respond. For example, in e-procurement, payment needs to be received by the merchant before its due date or follow-up actions will be initiated.
3 Existing mechanisms and their inadequacies

The way that failures are dealt with in workflow management tools and in business process models owes much to both exception handling mechanisms from programming languages and the compensation model introduced in Sagas QUOTE "[6]"
[6]
. For concreteness, we will use the BPEL4WS standard as the exemplar of this approach, although the same concepts are found elsewhere such as in WSCI or Microsoft BizTalk Server. A business process (one party in a multi-party protocol) is described as a nested arrangement of scopes. A scope can encapsulate either a basic activity, such as the task of simply receiving a message, or a structured activity, such as parallel threads, each of which is executing a sequence of basic activities. Basic activities can run as ACID transactions. When error occurs within a scope, a fault is generated and the innermost enclosing scope has all its ongoing activities automatically terminated. The appropriate fault handler code is then executed. No matter what the fault handler does, the scope is always regarded as having terminated abnormally. If the programmer has not provided a fault handler for a particular fault, then a default fault handler is used. The default handler acts as prescribed by the Sagas model: for every enclosed scope that has terminated successfully, its compensation handler is run (doing so in reverse chronological order of completion of these scopes), and the fault is then re-thrown to the enclosing scope. These compensation handlers are written by the application programmer, and are assumed to implement the semantic inverse of the original activity.

We find that there are situations in B2B applications where the correct way to handle an exception will depend on the state of other activities and data. In these cases, ongoing activities should not be automatically terminated but rather they should be paused to allow the state of the system to be determined (the precise state may not be known immediately due to asynchronous interactions between the components in the B2B application). This state should then be examined to determine the appropriate method to handle the exception. It may be that certain activities/sub-processes should be terminated while others should continue on as normal. For example, suppose a shipper notifies the merchant that that they will be unable to transport the order as agreed. In this case, the original shipment process should be cancelled and an alternative initiated, however the payment process should continue unhindered, unless the shipping charge changes as a result.
4 What are the consistency requirements for B2B applications?
In the previous sections, we discussed why existing fault-handling and transaction mechanisms are inadequate for B2B applications. We believe that researchers and vendors working on consistency support for long duration business processes have been seduced by the elegance and sound theoretical foundations of ACID transactions. The basic consistency mechanisms provided by current B2Bi technologies are based on this body of work. We believe consistency support for B2B applications should not be so heavily influenced by these existing transactional mechanisms. We have identified three key distinctions between the approaches taken by traditional transaction processing to ensure consistency and the needs of B2B applications.
A. Cancel may not be possible

The designer of a B2B application needs to handle the cases where compensation activities fail to complete or are not allowed to run at all. For each scope or process, there are not just two possible outcomes (committed, or aborted with no semantic effect); instead we have a broader and domain-specific set of possible outcomes.

B. Abort is the last resort

In B2B applications, it is often desirable to deal with failures by seeking alternate forward paths and building on the work done so far, rather than rolling back. We propose that fault-handlers should be able to observe the state of the interrupted activity, and of other concurrent activities, and they should be able to intervene intelligently in those activities. This requires that the faulting activity (and its sub-tasks and siblings) should not be terminated immediately, as happens in existing business process modelling standards.

C. Consistency conditions should be explicit

One of the great virtues of ACID transactions is that the locking and logging mechanisms are oblivious to the particular details of the domain-specific integrity constraints which capture the concept of consistency for that application. Most extended transaction models similarly define mechanisms for relating activities that do not include an explicit description of the consistency conditions that need to be valid at various points in the process. Because locks are not held for long duration in these models, the application programmer gets no support in reasoning about the correctness of their code in the face of concurrent activity. For B2B systems, we believe that something similar to the ConTract approach QUOTE "[7]"
[7]
 is needed, with domain-specific consistency conditions being described when they are needed for acceptable operation of the business process.

An open research question is thus what exactly are the right consistency and related fault handling mechanisms that should be provided in the infrastructure used to create B2B applications? One of the strengths of the ACID transaction model is its theoretical foundations, and such a foundation is even more vital for B2B applications, especially with the ever-increasing adoption of Web Services technologies. There is a need to be able to formally define what correctness and consistency means for a particular domain, and we need to be able to verify that consistency is indeed maintained for a B2B application in the presence of failures and concurrent activities.

Reference List

[1]
BizTalk Server. http://www.microsoft.com/biztalk/

[2]
Business Process Execution Language for Web Services (BPEL4WS), Version 1.0. http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

[3]
Web Service Choreography Interface (WSCI) 1.0 Specification. http://wwws.sun.com/software/xml/developers/wsci/

[4]
WebSphere MQ Workflow. http://www-3.ibm.com/software/integration/wmqwf/

[5]
A. K. Elmagarmid. Database Transaction Models for Advanced Applications, Morgan Kaufmann, 1992.

[6]
H. Garcia-Molina and Salem, K., "Sagas," ACM International Conference on Management of Data (SIGMOD)., pp. 249-259, 1987.

[7]
H. Wächter and A. Reuter. The ConTract Model. In: Database Transaction Models for Advanced Applications, ed. A. K. Elmagarmid. Morgan Kaufmann, 1992.pp. 219-263.

�Need to use better phase here.

1
v
4

