Embracing Failure:
A Case for Repair-centric System Design

Aaron B. Brown and David A. Patterson

Computer Science Division, University of California at Berkeley
{abrown, pattrsn} @s. berkel ey. edu

Abstract

Motivated by the lack of availability demonstrated by current approaches to building serv-
ers for the Internet environment, we argue for a new approach to building highly-avail-
able systems that better reflects the realities of the modern server environment, namely
that failures of hardware, software, and humans are inevitable. Our approach, denoted
repair-centric design, recognizes the inevitability of unanticipated failure and thus empha-
sizes recovery and repair rather than simple fault-tolerance. We define the properties that
a repair-centric system must provide, and briefly consider how they might be achieved.

1 The importance of availability and why it is lacking

Availability is the most important metric for modern computer systems. It is the lifeblood of corporate sur-
vival for e-commerce and e-business enterprises, and it is particularly crucial to those built around deliver-
ing services directly to the customer over the Internet. In the words of Kal Raman, CEO of drugstore.com,
“availability is as important as breathing in and out [is] to human beings” [4].

High availability used to be a solved problem in the transaction-processing community. The solution
was simple: buy an expensive fault-tolerant mainframe from a company like Tandem or IBM, deploy the
vendor-supplied high-availability database system, and hide the whole thing in the back office behind a
firewall of dumb terminals and human agents. With such a well-designed, stable, and controlled environ-
ment, high availability was straightforward to engineer.

While some applications can still use this approach, today’s most interesting applications do not. The
computing world has shifted toward a much more distributed, heterogeneous environment, where transac-
tion processing functionality and data access are exposed directly to customers through a complicated, het-
erogeneous conglomeration of interconnected systems—databases, application servers, middleware, and
web servers—constructed from a multi-vendor mix of off-the-shelf hardware and software. In these sys-
tems, perceived availability is defined by the weakest link in the system, and so it is not enough to simply
have a robust TP backend.

In this kind of environment, the environment of e-commerce and Internet business, availability is not
being delivered as promised. Despite high-profile advertising by all major vendors purporting to offer
high-availability solutions, and despite entire communities of researchers focusing on topics such as reli-
ability, maintainability, and fault tolerance, outages and failures remain frequent. A recent survey by Inter-
netWeek revealed that 65% of surveyed sites suffered a customer-visible outage at least once in the
previous 6-month period; 25% reported three or more outages during that period [15].

What’s wrong with this picture? Why does delivered availability fall so short of what is promised? We
claim that the answer is simple: there is a fundamental mismatch between traditional high-availability
approaches—fault-tolerant hardware, careful software testing, vendor-supplied technicians—and the reali-
ties of modern heterogeneous, distributed server environments, like those backing e-commerce and e-busi-
ness sites. This mismatch goes as deep as the key assumptions underlying traditional high-availability
design: that hardware and software can be built to have negligible failure rates, that failure modes of sys-
tems can be predicted and tolerated, and that maintenance and repair are error-free procedures.

As we will show in the next section of this paper, none of these assumptions hold true for modern net-
work service environments. If we want to address availability in these environments, then, we must sub-



scribe to a new set of assumptions and accept the inevitability of unpredictable failures in hardware,
software, and human operators. Once we do this, we recognize that, fundamentally, the only way to
increase availability is to embrace failure rather than fear it, and build systems with a mentality of failure
recovery and repair rather than failure avoidance. We call this approach repair-centric design.

2 Failures are inevitable

There are several factors contributing to the inevitability of failures in modern Internet-connected transac-
tion processing environments, but most important are the pressures of rapid innovation and cost reduction,
and a fundamental ignorance of the behavior of human operators during maintenance procedures. In this
section, we will show how these factors have lead to a method of system design where hardware and soft-
ware failures are inevitable, where human-induced failures are more likely than not, and where the com-
plexity and coupling of systems has made even the most unlikely failures a normal part of life.

2.1 Hardware and software failures are inevitable

Traditional high-availability systems have been designed to reduce the rate of visible hardware and soft-
ware failures to nearly zero. While this may be possible in the stable, highly-constrained, cost-insensitive
environment of traditional fault-tolerant systems, it is unrealistic given the way modern server systems are
constructed.

The world of Internet service delivery is one where functionality is king. Functionality changes
weekly as companies compete in an arms race of features; companies operate “in the gold rush to get their
applications online first” [10]. As functionality changes, so does software, and thus the traditional high-
availability design techniques of careful software engineering and extensive software testing go out the
window [6]. Major internet portals are deploying code written by gumshoe engineers with little more than
a week of job experience [2]. In the words of Debra Chrapraty, former C1O of E*Trade, a major online bro-
kerage service, “We used to have six months of development on a product and three months of testing. We
don’t live that way any more. . .. In Internet time, people get sloppy” [10]. When people are sloppy, soft-
ware bugs are the norm, and so software-induced failures are inevitable.

When we turn our attention to hardware, the situation does not look any better. Companies deploying
online services often operate on razor-thin profit margins (and in some cases no profits at all). They cannot
afford to spend millions of dollars on high-quality, fault-tolerant hardware when equivalent functionality
(although not fault-tolerance) is available at a fraction of the cost from commodity, off-the-shelf PC-based
hardware like the ubiquitous 1U PC. Unfortunately, this commodity hardware is failure-prone. The most
basic fault-detection and repair mechanisms are often omitted for cost reasons—many PC motherboards
are not even available with ECC memory. Less expensive desktop-oriented components (like IDE disks)
are often used. These cost-cutting measures result in non-trivial hardware failure rates. For example, the
production cluster run by the Google search engine experiences a node failure rate of 2-3% per year, with
one-third of those failures attributable to the failure of a DRAM or memory bus, problems that could have
been avoided had Google built their systems with ECC memory [7].

The Google example raises another important point: that of scale. While the memory failure described
above only occurs in about 1% of the cluster over the course of a year—an almost negligible failure rate for
a single system—the Google cluster has approximately 8000 nodes. On such a scale, that 1% failure rate
translates to more than one node failure per week. This is a general problem: as the scale of the infrastruc-
ture behind Internet-delivered services increases, the typically-ignored failure modes in the tails of the fail-
ure distribution will become more frequent.

2.2 Human failures are inevitable

All large systems rely on human beings for maintenance and repair. At the very least, humans must per-
form the physical actions of repairing, replacing, and expanding hardware. Most systems require human



intervention for software configuration and upgrading, and many require human intervention in the perfor-
mance tuning loop. The task of diagnosing and fixing failures and other aberrant behavior is also a stan-
dard task of the human administrator.

However, as we all know, humans make mistakes. Psychologists have shown that human error rates
are unquestionably non-zero, and can rise to between 10% and 100% in stressful situations (as one might
expect during off-hours emergency system maintenance) [13]. Humans make mistakes even in simple
tasks such as digit recognition [8]; we can hardly expect them to do better when dealing with unwieldy
maintenance interfaces to complex transaction processing systems.

Unfortunately, modern system designs do not take into account the possibility of human error. Tradi-
tional high-end fault-tolerant systems have a partial solution in that their vendors lock up their systems and
give the keys only to certified, trained service personnel. But even a highly-trained operator will inevitably
make mistakes, so this is hardly a complete solution. Furthermore, it is a solution that does not apply to
modern Internet service environments, where systems consist of collections of hardware and software from
different vendors deployed in highly varied configurations.

Thus all the conditions are right for human-induced system failures, and field data collected over the
past several decades bears out the claim that these failures are inevitable. Data from the late 1970s reveals
that operator error accounted for 50-70% of failures in electronic systems, 20-53% of missile system fail-
ures, and 60-70% of aircraft failures [3]. In the mid-1980s, a study of failures in fault-tolerant Tandem sys-
tems revealed that 42% were due to system administration errors—again human error [5]. Data collected
on the causes of failures in VAX systems reveals that in 1993, human operators were responsible for more
than 50% of failures, and that the error rate was rising as hardware and software failures become less
important [11]. A study of the telephone network (arguably one of the most fault-tolerant systems in
deployed use today) between 1992 and 1994 reveals that human errors resulted in 52% of non-overload
outages and were responsible for 50% of non-overload outage minutes, with about half of those due to
errors made by telco personnel performing maintenance [9]. And more recently, in 1999, a Vice President
at Oracle was reported as claiming that one “can have the best technology on the planet, but half the fail-
ures we analyze are human error” [10].

2.3 Unanticipated failures are inevitable

Although we have shown that hardware, software, and human failures are inevitable in modern network
service environments, one could still argue that with enough care, these failures could be anticipated and
avoided through fault-tolerance techniques. We have already explained why this kind of approach is
unlikely to succeed in the fast-paced, cost-conscious environment of Internet service delivery, but there is a
further argument to make that even with the best fault-tolerance techniques, unanticipated failures will still
sneak through and affect the system. This is most easily seen in the case of human error: humans are noto-
riously good at finding ways to break systems, and often ignore warnings and error messages when they do
not match the human’s own mental model of how the system should be operating [16].

More generally, we can turn to the sociological theory of risk analysis to discover that even simple
hardware and software failures will occur in practice in unanticipated combinations. Large servers are
complex, reasonably-tightly-coupled systems that perform a transformational function, consuming user
requests, transforming databases, and synthesizing new results, all under the guidance of human maintain-
ers. In the system taxonomy defined by sociologist and risk investigator Charles Perrow, these are exactly
the kind of system that is highly susceptible to unexpected interactions [12]. Perrow’s theories predict that
such systems are by their very nature subject to “normal accidents”: accidents (outages or failures in the
case of servers) that arise from multiple and unexpected hidden interactions of smaller failures and the
recovery systems designed to handle those failures. When viewed individually, normal accidents appear as
very unlikely, rare situations arising from bizarre and improbable combinations of factors. Perrow’s claim
is that normal accidents (and therefore outages) are inevitable and unpredictable, despite the best attempts
to model and compensate for failures.



3 Embracing failure: repair-centric design

“If a problem has no solution, it may not be a problem, but a fact, not to be solved, but to
be coped with over time”” — Shimon Peres [14]

We claim that the lack of high-availability in Internet-delivered data and transaction-processing services is
a result of focusing too much attention on avoiding failures rather than repairing them, on trying to
increase mean-time-to-failure while ignoring mean-time-to-repair. From the evidence and discussion in the
previous section, we can deduce that failures will always occur despite the best efforts of system design
and modeling. Drawing on the wisdom in the quotation by Shimon Peres that starts this section, we thus
conclude that further significant gains in availability can only come once failures are accepted as a normal,
unavoidable fact of system operation, and systems are designed with fast and effective repair mechanisms
that mitigate the long-term impact of those failures. We call this philosophy repair-centric design.

At its heart, repair-centric design addresses hardware, software, and human failures by providing
rapid and effective mechanisms for detecting and recovering from them. Recovery can take many forms—
from simple mechanisms like design-for-reboot [2], to more complex schemes such as fail-stop fault con-
tainment combined with data redundancy, to full regeneration of system state from backups, checkpoints,
and logs. A full discussion is outside the scope of this paper. But in all cases, these mechanisms should be
designed to make as few assumptions about failure characteristics as possible, and they should provide
means to recover from unanticipated catastrophic failures that make it past any standard fault-tolerance
lines of defense.

Furthermore, a repair-centric system design has to go beyond simply providing recovery mechanisms.
After all, all of the major transaction-processing systems today provide some recovery mechanisms in the
form of backups and transaction logging, and the simple existence of these mechanisms has not solved the
availability problem. To truly have a repair-centric design, recovery mechanisms have to be treated as first-
class parts of the system, and integrated into a framework that manages their use and guarantees their
effectiveness.

This repair-centric framework needs to provide several guarantees. First, it must ensure that problems
and failures are detected quickly so that they can be contained or repaired as soon as possible, and before
they have propagated through the system. As part of this detection, a repair-centric system should strive to
expose and repair latent errors in the system before they are activated; the kinds of “normal accidents” ana-
lyzed by Perrow and discussed above in Section 2.3 often occur only when many latent errors have accu-
mulated in the system and are all activated simultaneously in a chain-reaction cascade of failures.
Furthermore, repair-centric systems should provide assistance in diagnosing the root cause of problems
once they have been detected, speeding repair of the correct system component.

In addition to fast failure detection, a repair-centric system must also guarantee that its repair mecha-
nisms are trustworthy, whether they are fully automated or require human intervention; this is a particular
problem today, as recovery code is difficult to test and thus is often untested or buggy. The solution is to
periodically test recovery code in situ as part of normal system operation, allowing automated recovery
mechanisms be exercised and verified in the production environment. When repair requires human inter-
vention, those mechanisms should be exercised as well: the human operators should be subjected to realis-
tic “fire-drill” simulations of failures and repair, allowing them to become familiarized with the system’s
failure modes, maintenance interfaces, and recovery procedures, all in the realistic context of the produc-
tion environment. Such realistic, on-the-job operator training helps human operators calibrate their mental
models of the system and allows them to make mistakes and learn from them, an essential part of gaining
familiarity and confidence with system repair tasks.

The last key guarantee for a repair-centric system is that it must tolerate further errors and failures
during recovery and repair. In the large-scale systems that are being built today, the statistical probability
of double failures is becoming non-negligible. Furthermore, with human operators involved in recovery
and repair procedures, human-induced failures during these procedures are inevitable.



Finally, note that repair-centric design is complimentary to traditional fault-tolerance. A repair-centric
system can still incorporate redundant hardware and use well-tested software; these traditional mecha-
nisms will simply reduce the reliance on the repair-centric mechanisms, while the repair-centric mecha-
nisms will continue to provide a backstop for those unanticipated and human-induced failures that make it
past the traditional fault-tolerance defenses. In addition to reducing the frequency of repair, ideas will be
borrowed from fault tolerance to handle failures during repair.

3.1 Building repair-centric systems

How can we build repair-centric systems, especially in a transaction-processing environment? A full dis-
cussion is well outside the scope of this position paper, but we will identify a few important techniques.
First, a repair-centric system inherently requires redundancy of hardware and data—not necessarily at the
level of lockstep CPUs, but at least in the form of clustered hardware with replicated state. The system
design must be partitionable to support fault containment and to provide the means of safely exercising
repair mechanisms; again, physically-partitioned designs such as clustered or shared-nothing organizations
seem appropriate. To achieve the goal of quickly detecting failures, repair-centric systems should be built
to incorporate extensive self-testing and checking at the component and system-wide level. In addition to
traditional assertion-checking techniques, system components should verify the proper behavior of depen-
dent components by explicitly injecting realistic test inputs and checking the resulting outputs for both cor-
rectness and performance. To aid in diagnosis, repair-systems should automatically track the health of all
components, and use techniques such as dependency analysis [1] to automatically pinpoint the root-cause
of detected problems. Finally, to carry out the exercising of recovery mechanisms needed to guarantee their
proper behavior, repair-centric systems should have integrated mechanisms for fault-injection to simulate
failures and to trigger recovery mechanisms.

4 Conclusion

The transaction-processing world is different today than it used to be. With traditional back-office TP sys-
tems being supplanted by multi-tier, Internet-based service delivery, the assumptions behind system design
have changed, and traditional techniques for providing high availability have lost much of their power.
Since high availability is as important today as it has always been, we need new techniques for improving
availability, ones based on the realities of modern server environments. Our repair-centric design provides
such an approach: it recognizes the inevitability of failures that arises from Internet service environments
and devotes system resources to repairing and recovering from failures rather than avoiding them.

With failures being a fact of life in today’s server environments, only by embracing them can we take
new strides toward increasing availability.

References

[1] A. Brown, G. Kar, and A. Keller. An Active Approach to Characterizing Dynamic Dependencies for Problem
Determination in a Distributed Environment. To appear in Proceedings of the Seventh IFIP/IEEE International
Symposium on Integrated Network Management (IM VII), Seattle, WA, May 2001.

[2] G. Candea and A. Fox. Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel. Submission
to the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII).

[3] J. M. Christensen and J. M. Howard. Field Experience in Maintenance. Human Detection and Diagnosis of Sys-
tem Failures: Proceedings of the NATO Symposium on Human Detection and Diagnosis of System Failures, J.
Rasmussen and W. Rouse (Eds.). New York: Plenum Press, 1981, 111-133.

[4] S. Fisher. E-business redefines infrastructure needs. InfoWorld, 7 January 2000. Available from www.infor-
world.com.

[5] J. Gray. Why Do Computers Stop and What Can Be Done About It? Symposium on Reliability in Distributed
Software and Database Systems, 3-12, 1986.



[6] J. Hamilton. Fault Avoidance vs. Fault Tolerance: Testing Doesn’t Scale. High Performance Transaction Sys-
tems (HPTS) Workshop, Asilomar, CA, 1999.

[7] J. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, 3e (beta version). San Fran-
cisco: Morgan-Kauffmann, 2001.

[8] B. H. Kantowitz and R. D. Sorkin. Human Factors: Understanding People-System Relationships. New York:
Wiley, 1983.

[9] D.R. Kuhn. Sources of Failure in the Public Switched Telephone Network. IEEE Computer 30(4), April 1997.
[10] J. Menn. Prevention of Online Crashes is No Easy Fix. Los Angeles Times, 2 December 1999, C-1.

[11] B. Murphy and T. Gent. Measuring System and Software Reliability using an Automated Data Collection Pro-
cess. Quality and Reliability Engineering International, 11:341-353, 1995.

[12] C. Perrow. Normal Accidents: Living with High-Risk Technologies. Princeton, NJ: Princeton Press, 1999.

[13] R. H. Pope. Human Performance: What Improvement from Human Reliability Assessment. Reliability Data
Collection and Use in Risk and Availability Assessment: Proceedings of the 5th EureData Conference, H.-J.
Wingender (Ed.). Berlin: Springer-Verlag, April 1986, 455-465.

[14] D. Rumsfeld. Rumsfeld’s Rules: Advice on government, business and life. The Wall Street Journal Manager’s
Journal, 29 January 2001.

[15] T. Sweeney. No Time for DOWNTIME—IT Managers feel the heat to prevent outages that can cost millions of
dollars. InternetWeek, n. 807, 3 April 2000.

[16] C.D. Wickens and C. Kessel. Failure Detection in Dynamic Systems. Human Detection and Diagnosis of Sys-
tem Failures: Proceedings of the NATO Symposium on Human Detection and Diagnosis of System Failures, J.
Rasmussen and W. Rouse (Eds.). New York: Plenum Press, 1981, 155-169.



	Embracing Failure: A Case for Repair-centric System Design
	Abstract
	1 The importance of availability and why it is lacking
	2 Failures are inevitable
	2.1 Hardware and software failures are inevitable
	2.2 Human failures are inevitable
	2.3 Unanticipated failures are inevitable

	3 Embracing failure: repair-centric design
	3.1 Building repair-centric systems

	4 Conclusion
	References


